
3. daisy:35 (Barnum, Sean)

4. daisy:345 (Gegick, Michael)

8. All rights reserved. It is reprinted with permission from Addison-Wesley Professional.

Securing the Weakest Link
Sean Barnum, Cigital, Inc. [vita3]
Michael Gegick, Cigital, Inc. [vita4]

Copyright © 2005 Cigital, Inc.

2005-09-19

Attackers are more likely to attack a weak spot in a software system than to penetrate a heavily fortified
component. For example, some cryptographic algorithms can take many years to break, so attackers are
not likely to attack encrypted information communicated in a network. Instead, the endpoints of
communication (e.g., servers) may be much easier to attack. Knowing when the weak spots of a software
application have been fortified can indicate to a software vendor whether the application is secure
enough to be released.

Detailed Description Excerpts

According to Viega and McGraw [Viega 02] in Chapter 5, "Guiding Principles for Software Security,"
in "Principle 1: Secure the Weakest Link" from pages 93-96:8

Security practitioners often point out that security is a chain; and just as a chain is only as strong
as the weakest link, a software security system is only as secure as its weakest component. Bad
guys will attack the weakest parts of your system because they are the parts most likely to be
easily broken. (Often, the weakest part of your system will be administrators, users or tech support
people who fall prey to social engineering.)

It's probably no surprise to you that attackers tend to go after low-hanging fruit. If a malicious
hacker targets your system for whatever reason, they're going to follow the path of least
resistance. That means they'll try to attack the parts of the system that look the weakest, and not
the parts that look the strongest. (Of course even if they spend an equal effort on all parts of your
system, they're far more likely to find exploitable problems in the parts of your system most in
need of help.)

A similar sort of logic pervades the physical security world. There's generally more money in a
bank than a convenience store, but which one is more likely to be held up? The convenience store,
because banks tend to have much stronger security precautions. Convenience stores are thus a
much easier target. Of course the payoff for successfully robbing a convenience store is much
lower than knocking off a bank; but it is probably a lot easier to get away from the convenience
store crime scene.

So to stretch our analogy a bit, you want to look for and better defend the convenience stores in
your software system.

Consider cryptography. Cryptography is seldom the weakest part of a software system. Even if a
system uses SSL-1 with 512-bit RSA keys and 40-bit RC4 keys (which is, by the way, considered
an incredibly weak system all around) an attacker can probably find much easier ways to break
the system than attacking the crypto. Even though this system is definitely breakable through a

Securing the Weakest Link 1
ID: 356 | Versie: 4 | Datum: 7-6-06 15:27:11

daisy:35
daisy:345

concerted crypto attack, successfully carrying out the attack requires a large computational effort
and some knowledge of cryptography.

Let's say the bad guy in question wants access to secret data being sent from point A to point B
over the network (traffic protected by SSL-1). A clever attacker will target one of the endpoints,
try to find a flaw like a buffer overflow, and then look at the data before it gets encrypted, or after
it gets decrypted. Attacking the data while encrypted is just too much work. All the cryptography
in the world can't help you if there's an exploitable buffer overflow, and buffer overflows abound
in code written in C.

For this reason, while cryptographic key lengths can certainly have an impact on the security of a
system, they aren't all that important in most systems, where there exist much bigger and more
obvious targets.

For similar reasons, attackers don't attack a firewall unless there's a well-known vulnerability in
the firewall itself (something all too common, unfortunately). Instead, they'll try to break the
applications that are visible through the firewall, since these applications tend to be much easier
targets. New development tricks and protocols like SOAP, a system for tunneling traffic through
port 80, make our observation even more relevant. It's not about the firewall; it's about what is
listening on the other side of the firewall.

Identifying the weakest component of a system falls directly out of a good risk analysis. Given
good risk analysis data, addressing the most serious risk first, instead of a risk that may be easiest
to mitigate, is always prudent. Security resources should be doled out according to risk. Deal with
one or two major problems, and move on to the remaining ones in order of severity.

Of course, this strategy can be applied forever, since 100% security is never attainable. There is a
clear need for some stopping point. It is okay to stop addressing risks when all components appear
to be within the threshold of acceptable risk. The notion of acceptability depends on the business
proposition, of course.

Sometimes it's not the software that is the weakest link in your system; sometimes it's the
surrounding infrastructure. For example, consider social engineering, an attack in which a bad guy
uses social manipulation to break into a system. In a typical scenario, a service center will get a
call from a sincere sounding user, who will talk the service professional out of a password that
should never be given away. This sort of attack is easy to carry out, because customer service
representatives don't like to deal with stress. If they are faced with a customer who seems to be
really mad about not being able to get into their account, they may not want to aggravate the
situation by asking questions to authenticate the remote user. They will instead be tempted just to
change the password to something new and be done with it.

To do this right, the representative should verify that the caller is in fact the user in question who
needs a password change. Even if they do ask questions to authenticate the person on the other
end of the phone, what are they going to ask? Birthdate? Social Security number? Mother's
maiden name? All of that information is easy for a bad guy to get if they know their target. This
problem is a common one, and is incredibly difficult to solve.

One good strategy is to limit the capabilities of technical support as much as possible (remember,
less functionality means less security exposure). For example, you might choose to make it
impossible for a user to change a password. If a user forgets their password, then the solution is to
create another account. Of course, that particular example is not always an appropriate solution,
since it is a real inconvenience for users. Relying on caller ID is a better scheme, but that doesn't
always work either. That is, caller ID isn't available everywhere. Moreover, perhaps the user is on
the road, or the attacker can convince a customer service representative that they are the user on
the road.

Securing the Weakest Link 2
ID: 356 | Versie: 4 | Datum: 7-6-06 15:27:11

The following somewhat elaborate scheme presents a reasonable solution. Before deploying the
system, a large list of questions is composed (say, no fewer than 400 questions). Each question
should be generic enough that any one person should be able to answer it. However, the answer to
any single question should be pretty difficult to guess (unless you are the right person). When the
user creates an account, we select 20 questions from the list, and ask the user to answer 6 of them
that the user has answers for, and is most likely to give the same answer if asked again in two
years.

Here are some sample questions:

• What is the name of the celebrity you think you most resemble, and the one you would most
like to resemble?

• What was your most satisfying accomplishment in your high school years?

• List the first names of any significant others you had in high school.

• Whose birth was the first birth that was significant to you, be it a person or animal?

• Who is the person in whom you were most interested to whom you never expressed your
interest (your biggest secret crush)?

When someone forgets their password and calls technical support, technical support refers the
user to a web page (that's all they are given the power to do). The user is provided with three
questions from the list of six, and must answer two correctly. If they answer two correctly, then
we do the following:

• Give them a list of 10 questions, and ask them to answer three more.

• Let them set a new password.

We should probably only allow a user to authenticate in this way a small handful of times (say,
three).

The result of this scheme is that users can get done what they need to get done when they forget
their passwords, but tech support is protected from social engineering attacks. We're thus fixing
the weakest link in a system.

All of our asides aside, good security practice dictates an approach that identifies and strengthens
weak links until an acceptable level of risk is achieved.

According to Schneier [Schneier 00] in "Security Processes":

Secure the Weakest Link. Spend your security budget securing the biggest problems and the
largest vulnerabilities. Too often, computer security measures are like planting an enormous stake
in the ground and hoping the enemy runs right into it. Try to build a broad palisade.

Further Reading
Crafting malicious input is one method of circumventing strong encryption or user authentication. For
example, an attacker need only inject a simple SQL command in a web form to obtain a list of
usernames that are encrypted in a database. The failure to sanitize user input that contains SQL
commands represents a weak link that attackers often prey on. Other examples of malformed input
include the injection of shell commands that are executed with root privileges and cross-site scripting
attacks, in which script code is injected in HTML pages that can reveal a user's cookie information.
Attackers don't stop at text entry fields; they can also manipulate protocols (e.g., HTTP GET requests

Securing the Weakest Link 3
ID: 356 | Versie: 4 | Datum: 7-6-06 15:27:11

1. mailto:copyright@cigital.com

and payload information) to wreak havoc on a victim machine. Preventing users from being able to enter
arbitrary data into an application is crucial for providing good security.

A black list [Hoglund 04] can be created that contains possible forms of malicious input for a data entry
field that developers can check against in their code. However, determining all variations of unsafe input
is infeasible because of the sheer number of possible exploits an attacker can employ. Instead,
developers may code according to what a white list [Hoglund 04] defines as well-formed input for a
given input field. Good requirements engineering makes it possible to know exactly what input is
expected so the proper security checks can be put in place. Securing the code that interfaces with the
user will indubitably decrease the likelihood of a successful attack.

References

[Hoglund 04] Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code.
Boston, MA: Addison-Wesley, 2004.

[Schneier 00] Schneier, Bruce. "The Process of Security." Information Security Magazine.
April, 2000.
http://infosecuritymag.techtarget.com/archives2000.shtml#apr2000.

[Viega 02] Viega, John & McGraw, Gary. Building Secure Software: How to Avoid
Security Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005. Cigital-authored documents are sponsored by the U.S. Department of
Defense under Contract FA8721-05-C-0003. Cigital retains copyrights in all material produced under
this contract. The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce
these documents, or allow others to do so, for U.S. Government purposes only pursuant to the copyright
license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital,
including information about “Fair Use,” contact Cigital at copyright@cigital.com1.

Velden

Naam Waarde

Copyright Holder Cigital, Inc.

Velden

Naam Waarde

Securing the Weakest Link 4
ID: 356 | Versie: 4 | Datum: 7-6-06 15:27:11

http://infosecuritymag.techtarget.com/archives2000.shtml#apr2000
mailto:copyright@cigital.com

is-content-area-overview false

Content Areas Knowledge/Principles

SDLC Relevance Design

Workflow State Publishable

Securing the Weakest Link 5
ID: 356 | Versie: 4 | Datum: 7-6-06 15:27:11

